
Virtual Hand Interactions with ARKit

Bidipta Sarkar
Stanford University

bidiptas@stanford.edu

Abstract

An ideal user input method for immersive interactions
in augmented reality (AR) would treat the user’s body as a
part of the AR system. In this work, we use Apple’s ARKit
to predict 3D locations of hand joints for a headset-based
application. We set up a collaborative AR experience with
an iPhone and an iPad using Multipeer Connectivity to tri-
angulate the hand joints. We verify that this pose recon-
struction satisfies the constraints on joint connections and
adequately handles occlusions. Finally, we show examples
of our application working in real time. The source code
is located at https://github.com/bsarkar321/
ARHandInteraction.

1. Introduction

A big question when designing augmented reality expe-
riences is choosing an immersive user input method. Many
mobile AR apps rely on touchscreen input, but this would
not be practical for AR experiences where headsets are
used. Another common option is the use of handheld con-
trollers with buttons, but this limits the expressiveness of
user input. An ideal solution would instead track body
movements, especially hands, and insert a valid model of
the user’s pose into the virtual space. In this project, we
use Apple’s ARKit [1] with my phone mounted on my head
along with a secondary iPad to track my hands in an AR
experience. With this, we want to determine if hands can be
expressed in AR and perform complex gestures.

We approach this problem by first finding the locations
of finger joints projected into both cameras. With this in-
formation, we can construct rays from each camera repre-
senting the possible locations of the joints. We then find the
points that best satisfy the ray constraints from both views
as estimates for the 3D joint locations.

2. Related Work

The existing literature on virtual hand interactions inves-
tigates a variety of approaches to estimating 3D hand poses.

Figure 1. The typical hand model.

Many approaches use depth cameras along with RGB video
streams to collect shape information [7]. However, none of
our devices have depth sensors, so we would not be able
to implement these techniques in ARKit. Many other tech-
niques involve reconstructing the entire hand mesh [6], but
this would be too expensive to perform in real-time on a
mobile processor.

Apple’s Vision framework [3] provides a small set of op-
timized 2D vision tasks, including 2D hand joint detection.
Vision also gives predictions for occluded joints, which
makes this a very helpful framework for our task. To find
the best fitting point, we can use the least-squares intersec-
tion of lines technique [8].

2.1. Hand Model

Within the literature, there are 21 relevant joints on the
hand [7], which are highlighted in Figure 1.

Each “bone” connecting these joints is fixed in length.
At the base, we have the wrist, which can have any position
and orientation. For each finger (excluding the thumb), we
have the metacarpophalangeal joint (MCP), the proximal
interphalangeal joint (PIP), the distal interphalangeal joint
(DIP), and finally the tip of the finger [5]. For the thumb, we
have the carpometacarpal joint (CMC), the metacarpopha-
langeal joint (MP), the interphalangeal joint (IP), and the
tip.

The MCP and CMC are ball joints with 2 degrees of free-
dom. The other finger joints have 1 degree of freedom since
they must bend in the direction of the finger.

1

https://github.com/bsarkar321/ARHandInteraction
https://github.com/bsarkar321/ARHandInteraction


3. Approach
The main problem is to reconstruct the 3D locations of

hand joints in real time given images of two hands from
different perspectives. We also have access to the camera
matrices associated with each device. In the following sub-
sections, we will describe how this can be accomplished
within iOS.

3.1. iOS Frameworks

Within this project, we use three high-level frameworks
that Apple provides to developers: ARKit [1], Vision [3],
and Multipeer Connectivity [2]. In its current state, ARKit
is able to track points in the real world and add a virtual
overlay that appears to be anchored to the real world. The
Vision framework is able to detect and track hand and bod-
ies in real time [4], and it can determine the 2D locations
of joints in screen space. Finally, the Multipeer Connec-
tivity framework allows multiple devices to communicate
with one another over a local network, allowing for shared
AR interactions.

3.2. Datasets

The only data needed for this task are the real-time im-
ages from both cameras. The Vision framework already has
pre-trained networks for (2D) hand pose detection, so addi-
tional offline datasets for hand segmentation are not neces-
sary.

3.3. Physical Setup

The environment will consist of a head-mounted phone,
a secondary ARKit-compatible device (like an iPad) with a
good view of the hands, and a room with clear space so the
user does not bump into other objects.

The head-mounted phone will have a stereo view with
one AR scene for each eye. The user will need to look at
their hands in order to get joint locations from both per-
spectives. Using Vision, the application will predict 2D lo-
cations of the joints.

The secondary device with a good view of the hands will
also use the Vision framework to find the locations of the
user’s hand joints. Using Multipeer Connectivity, the sec-
ondary device will be in the same scene as the user, so it
can communicate the state of the hands to the head-mounted
phone.

4. Theory for Reconstruction
In this section, we describe ways to generate the 3D joint

locations given 2D projections.

4.1. Single View Reconstruction

Using Vision, we can determine the 2D locations of the
joints projected onto the camera. Using just this informa-

tion, each joint is constrained onto a ray originating from
the camera location, instead of a specific 3D point. We in-
vestigated if additional constraints could lead to a unique
solution. Suppose we had the lengths of all the bones in
Figure 1. Then, if we knew the wrist location, we can find
the two possible locations for MCP joints for each finger
by performing ray-sphere intersections. Unfortunately, we
cannot verify which choice is correct because both choices
project onto the same set of points.

In general, even if we know the full model of the
metacarpophalangeal joints and the wrist and approximate
that entire system as a rigid polygon, we will not know the
precise 3D position. That problem is equivalent to calibrat-
ing a camera using just points on a single plane, which is a
degenerate case for calibration. Therefore, single view re-
construction is not possible given just the 2D joint positions
in the camera frame. Note that this is different from the
single-view reconstruction from the literature, because they
attempt to recreate the entire hand from the image, which
has more information like shadows and finger thickness.

4.2. Two View Reconstruction

Suppose we want to find the 3D location of a single joint
given its projections in two separate views. Suppose the
camera origins are o⃗1 and o⃗2 in some common reference
system. If n⃗1 is the (unit-length) direction of the first ray
and n⃗2 is the direction of the second ray, we know that the
point p⃗ satisfies

p⃗ = o⃗i + n⃗iti (1)

where i = 1 or 2, and ti is the distance from camera i.
To find the intersection point, we can use the least-squares
intersection of lines technique [8] to get

[
2∑

i=1

[I − nin
T
i ]

]
p⃗ =

2∑
i=1

[I − nin
T
i ]o⃗i (2)

where I is the R3×3 identity matrix. To derive this for-
mula, we start with the distance from p⃗ to each line. If di
is the distance from p⃗ to line i, we know that it is the dis-
tance from p⃗ to the projection of p⃗ onto the line. Using the
Pythagorean theorem, this is equivalent to

di =
√
(p⃗− o⃗i) · (p⃗− o⃗i)− ((p⃗− o⃗i) · ni)2

We want to minimize the sum of the squared distances,
which is L =

∑2
i=1 d

2
i . To find the value of p⃗ that mini-

mizes L, we can take the derivative of L with respect to p⃗,

2



which we can evaluate as follows:

∂L
∂p⃗

=

2∑
i=1

∂[d2i ]

∂p⃗

=

2∑
i=1

2(p⃗− o⃗i)− 2((p⃗− o⃗i) · ni)ni

= 2

2∑
i=1

(p⃗− o⃗i)− nin
T
i (p⃗− o⃗i)

= 2

2∑
i=1

(I − nin
T
i )(p⃗− o⃗i)

Setting this equal to zero, we can simplify as follows:

2

2∑
i=1

(I − nin
T
i )(p⃗− o⃗i) = 0

2∑
i=1

(I − nin
T
i )p⃗ =

2∑
i=1

(I − nin
T
i )(o⃗i)

We can solve the normal equations to get the value of p⃗
as

p⃗ = (MTM)−1MT
2∑

i=1

[I − nin
T
i ]o⃗i (3)

where M =
∑2

i=1[I − nin
T
i ].

5. Implementation Details

For testing the system, I use an iPhone XS as the pri-
mary device and an iPad Pro (2nd generation) as the sec-
ondary device. As a headset, I’m using a standard Google
Cardboard-like headset provided by Stanford. This headset
has a removable lid so I can create a hole for the camera to
see the environment.

5.1. Headset View

I modified an existing implementation of a headset view
[9] so it is compatible with my current phone. However, I
modified the left and right eye viewports to show the same
AR scene, because otherwise the world felt like it was on a
flat plane with hand joints in front of it.

Here is an example of the phone in the headset:

I also added a text UI element which displays general in-
formation about the application status, like if a device wants
to connect.

5.2. Real-time Vision Processing

Using the Vision framework and asynchronous process-
ing, I was able to get real-time 2d joint locations of the hand.
The code runs at 60 fps on both devices, but the actual vi-
sion sampling rate is much lower.

To convert each (u, v) coordinate into a ray, I calculated
the direction that each point represents using the formula

d⃗ =

α(v − 0.5)
−(u− 0.5)

−1

 (4)

where α is the ratio of the image width to the image
height. The u and v are switched from their typical cor-
respondences to x and y because Apple treats the “portrait”
phone orientation as the default, but we had to swap these
since the application is running in landscape mode. We also
had to subtract 0.5 from each coordinate to shift the range
from [0, 1] to [-0.5, 0.5]. Using homogeneous coordinates,
we can express this vector as a direction by normalizing
d⃗ and adding 0 as the fourth coordinate. However, this is
still in the perspective of the camera. To get this into world
frame, we just left-multiply by the R4×4 camera transform
matrix, which encodes the camera’s translation and rotation
from the world origin. Note that this transformation is rigid
and does not require a homogeneous divide.

5.3. Multipeer Connectivity

Apple’s Documentation for Multipeer Connectivity [2]
demonstrates some techniques for enabling device-to-
device communication. For this project, either device can
be a browser or advertiser, since both sides will receive the
same information from one another. Using ARKit, we au-
tomatically receive an ARAnchor representing the location
and orientation of the other device when AR collaboration
is enabled. Using these anchors, we can reproject the rays
from the one device into the space of the other device.

3



One issue with the base Multipeer Connectivity anchor
is that it finds the location of the center of the device. Unfor-
tunately, this means that we have to hard-code the position
of the camera relative to the device center. This creates a
source of error in the system, and it may need to be recali-
brated to fit different types of devices.

Each time the 2D joint locations are processed on one
device, we need to send the new set of rays to the peer de-
vice. Each device has a separate “world-space” coordinate
system but we can use the calibrated anchors to regenerate
the rays. The only information we need to send between the
devices is the 3D ray directions corresponding to each joint.
Since there are 21 joints in total, this results in 63 floats,
or 252 bytes per hand each time joint information can be
communicated.

Each device associates the other device’s calibrated an-
chor as a colored sphere. When properly calibrated, the
sphere is centered on the camera of the other device, as
shown below as a black sphere:

6. Experiment
Since this entire application is based on real-time data,

we do not have ground-truth joint positions to compare our
estimates to. Instead, as a quantitative evaluation of the
quality of the reconstruction, we can measure the distances
between various joints at different points in time. A suc-
cessful algorithm will have a low standard deviation for the
measured distances between connected joints. During the
entire experiment, I moved my fingers and wrist to ensure
that the system is robust to different hand poses.

I also tested various poses and motions hands as a form
of a qualitative stress test. Visually, we can determine if the
joint tracking points are following the expected locations of
the joints despite occlusions.

7. Results
7.1. Quantitative Results

In Table 1, we measure the distances between joints over
100 samples from the environment. When joints should be
rigid, the standard deviation is below a centimeter, which
shows that the two view reconstruction case mostly pre-
serves the joint distance constraints in real hands. For this

Joint 1 Joint 2 Mean SD
Wrist Index MCP 0.06831 0.00818
Ring MCP Ring PIP 0.0348 0.00627
Little PIP Little DIP 0.0223 0.00933
Thumb IP Thumb Tip 0.0278 0.00371
Thumb Tip Ring Tip 0.0938 0.03309

Table 1. Various Distances between joints in meters. The first 4
are rigid connections while the last one is not.

test, the thumb was the closest to the phone, and the little
finger was mostly occluded. We can see that the standard
deviation for the thumb measurements is much lower than
that of the little finger, which shows that having a clear view
of the joints helps with reconstruction.

The last test in the table just evaluates the distance be-
tween the tip of the thumb and ring fingers, which do not
have a rigid constraint. In this case, we see a much higher
standard deviation compared to the rigid cases, as expected.

7.2. Common Qualitative Scenarios:

In all of the following scenarios, we are examining the
screen of the primary camera, and the secondary camera is
kept stationary around 30 cm away from the hands to the
right of the scene. The two views are therefore perpendic-
ular to one another. Furthermore, the left hand is typically
occluded by the right hand in most of these views in the
perspective of the second camera.

To help with visualization, we put spheres with a diame-
ter of 1 cm at the predicted location of the 21 joints in each
hand. The left hand joints are colored blue while the right
hand joints are green.

In general, I was able to get 60 fps for the display refresh
rate, but the true sampling rate of the joint detection was
around 30 Hz.

Here is a typical scenario for the hand tracking:

As you can see above, the projected tracking locations
are slightly off from the true locations of the joints. The left
little finger is almost entirely occluded from the perspective
of the second camera, so its location is quite far off. How-
ever, the right little finger is quite accurate because it is in
the full view of both cameras. The other fingers are reason-
ably located.

4



Here is a scenario where two fingers are placed down:

The index and middle fingers of both hands have rea-
sonable predicted locations. The locations of the occluded
fingers in the left hand seem to be reasonable since these
fingers wrap into the palm. However, the occluded fingers
on the right hand are predicted to be along the same line,
which is unlikely.

Here is a scenario where the hands are fists:

All of the fingers are fully occluded, but it seems like
most of the predictions are somewhat accurate. The wrist
locations line up with previous measurements, and the
knuckles (MCP) are on the correct spots for the right hand.
The left hand has significant drift for the little and ring fin-
gers because all of those knuckles are occluded from the
second camera view.

Here is a scenario where the hands are facing upwards

The current program somewhat works when the hands
are facing upwards, as you can see good predictions for joint
locations, especially on the right hand. However, Vision has
a hard time processing the chirality (left or right handed-
ness), of my hand when my palms are facing upwards. I
worked around this in my code to ensure that both obser-
vations do not have the same chirality, but this means each
hand could be misidentified.

7.3. Complex Hand Interactions:

In this section, we test complex hand-hand interactions.
Occlusions are already tricky for hand segmentation, but
multiple hands open up the possibility for misidentifications
of joints across hands.

Here is a scenario where two hands are clasped together

The joint locations look mostly fine, but there are a cou-
ple of issues with this reconstruction. The wrist locations
for both hands are far off. Furthermore, the reconstruction
seems to show that the left hand is inside of the right hand,
but the fingers are actually interlacing. This demonstrates
that the interactions of two hands harms 2D joint prediction
in Vision.

Here is a scenario where hands are creating a shadow
“butterfly”

The reconstruction of the right hand seems mostly fine,
but the left hand seems to be suffering from drift due to oc-
clusions from the right hand. Furthermore, the right thumb
does not seem to have its points properly tracked because it
is occluded by the left thumb in the primary camera’s view.

8. Conclusions
The Vision framework appears to be quite robust and

able to handle many scenarios where the hands are oc-
cluded. In addition, ARKit seems to handle object place-
ment quite well when lighting conditions are ideal and there
is not too much motion. However, there are still a few cases
where the outputs are not completely reliable, like the chi-
rality output when hands are facing upwards and in cases of
hand-hand interactions.

Multipeer Connectivity was able to reliably send infor-
mation between devices, though it often took a long time

5



to establish a solid connection. Overall, I think the idea of
collecting 2D joint information across multiple devices has
merit for hand pose reconstruction tasks.

In the future, I would like to continue making this system
more robust. Currently, the “rigid” bone constraints are not
a factor in the code, but adding them could make the system
more stable overall. I would also like to see if full hand
model reconstruction is possible with mobile chips, because
this would allow for more sophisticated techniques for hand
reconstruction with a single RGB data stream. I would also
like to see it being used for grasping AR objects once it is
more robust, because this could improve the expressiveness
of AR applications.

The full source code for this project is located at
https://github.com/bsarkar321/

ARHandInteraction.
A video for single-view projections (with

incorrect depth projections) is located at
https://drive.google.com/file/d/
1fWSlkDgma4XyI2Jrr3vJpDZEXEFga5WP/view?
usp=sharing.

A video for two view reconstruction is located
at https://drive.google.com/file/d/
1Rh1sHnOpdZxG6oVDIftx-JYUXNY7n2GF/view?
usp=sharing.

References
[1] Apple. Arkit. https://developer.apple.com/

documentation/arkit/.
[2] Apple. Multipeer connectivity. https://

developer.apple.com/documentation/
multipeerconnectivity.

[3] Apple. Vision. https://developer.apple.com/
documentation/vision.

[4] Apple. Vndetecthumanhandposerequest. https:
//developer.apple.com/documentation/
vision/vndetecthumanhandposerequest.

[5] Apple. Vnhumanhandposeobservation.jointname. https:
//developer.apple.com/documentation/
vision/vnhumanhandposeobservation/
jointname.

[6] M. de La Gorce, D. J. Fleet, and N. Paragios. Model-
based 3d hand pose estimation from monocular video. IEEE
transactions on pattern analysis and machine intelligence,
33(9):1793–1805, 2011.

[7] R. Li, Z. Liu, and J. Tan. A survey on 3d hand pose estima-
tion: Cameras, methods, and datasets. Pattern Recognition,
93:251–272, 2019.

[8] J. Traa. Least-squares intersection of
lines. https://silo.tips/download/
least-squares-intersection-of-lines, 2013.

[9] H. Weng. Arkit headset view. https://github.com/
hanleyweng/iOS-ARKit-Headset-View, 2018.

6

https://github.com/bsarkar321/ARHandInteraction
https://github.com/bsarkar321/ARHandInteraction
https://drive.google.com/file/d/1fWSlkDgma4XyI2Jrr3vJpDZEXEFga5WP/view?usp=sharing
https://drive.google.com/file/d/1fWSlkDgma4XyI2Jrr3vJpDZEXEFga5WP/view?usp=sharing
https://drive.google.com/file/d/1fWSlkDgma4XyI2Jrr3vJpDZEXEFga5WP/view?usp=sharing
https://drive.google.com/file/d/1Rh1sHnOpdZxG6oVDIftx-JYUXNY7n2GF/view?usp=sharing
https://drive.google.com/file/d/1Rh1sHnOpdZxG6oVDIftx-JYUXNY7n2GF/view?usp=sharing
https://drive.google.com/file/d/1Rh1sHnOpdZxG6oVDIftx-JYUXNY7n2GF/view?usp=sharing
https://developer.apple.com/documentation/arkit/
https://developer.apple.com/documentation/arkit/
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/vision
https://developer.apple.com/documentation/vision
https://developer.apple.com/documentation/vision/vndetecthumanhandposerequest
https://developer.apple.com/documentation/vision/vndetecthumanhandposerequest
https://developer.apple.com/documentation/vision/vndetecthumanhandposerequest
https://developer.apple.com/documentation/vision/vnhumanhandposeobservation/jointname
https://developer.apple.com/documentation/vision/vnhumanhandposeobservation/jointname
https://developer.apple.com/documentation/vision/vnhumanhandposeobservation/jointname
https://developer.apple.com/documentation/vision/vnhumanhandposeobservation/jointname
https://silo.tips/download/least-squares-intersection-of-lines
https://silo.tips/download/least-squares-intersection-of-lines
https://github.com/hanleyweng/iOS-ARKit-Headset-View
https://github.com/hanleyweng/iOS-ARKit-Headset-View

