
Multi-Agent Self-Learning Tank Game
Bidipta Sarkar

bidiptas@stanford.edu
Henry Ang

henryang@stanford.edu

I. INTRODUCTION

Many simple-player and multi-player games feature hostile
entities that attempt to slow the player’s progression. These
entities often have very similar abilities to the players, but
people can usually tell when they are playing a real opponent
or an AI. Typically, these agents act in a very simplistic manner
and can be outmaneuvered easily by experienced players.
However, using reinforcement learning, we can train an agent
to become a more effective adversary.

We have developed a simple tank game, where two players
can move around the screen and shoot bullets at one another.
Players have to learn to predict where their opponent will be to
aim properly. Players also should learn how to dodge incoming
bullets while also trying to get to a more advantageous position
on the screen.

II. LITERATURE REVIEW

Traditional reinforcement learning (RL) uses a lookup table
to store values and actions but this approach is slow as it
learns the value of each state individually and it is memory
consuming due to the curse of dimensionality. The solution
is to estimate the value function using differentiable function
approximations. There has been a tremendous amount of
development in artificial intelligence with respect to RL over
this past decade, in particular, “deep reinforcement learning
(DRL)” – RL with function approximation by deep neu-
ral networks. For example, in the literature, one somewhat
relevant paper to our project is the paper by Mnih et al.
(2013) who developed a RL agent called Deep Q-Network
(DQN) to play Atari that combined Q-learning with a deep
convolutional ANN specialized for processing spatial arrays
of data such as images. For learning each game, DQN used
the same raw input, the same network architecture, and the
same parameter values (i.e., step size, discount rate, explo-
ration parameters, and other parameters more specific to their
implementation). However, the Atari game has no adversarial
agent which makes our problem different. Other papers more
relevant to our project are from Fang et al. entitled “Applying
Reinforcement Learning for the AI in a Tank-Battle Game”
and from Smith et al. entitled “Continuous and Reinforcement
Learning Methods for First-Person Shooter Games”. Fang et.
al. wrote a research paper on applying RL to a Tank-Battle
Game. They used a game engine to create a Tank game
and applied RL for the tank. Fuzzy logic was used as a
concept to improve the performance of reinforcement learning.
They performed several experiments based on their research
to find the best fuzzy functions. Smith et al. wrote a paper

on continuous learning models applied to first-person shooter
bots. For example, by employing continuous learning, one can
create bots that continuously adapt their behavior in response
to their experiences, allowing them to change their actions and
responses over time. There are generally three types of Deep
Reinforcement Learning algorithms: 1) value optimization, 2)
policy optimization, and 3) actor-critic. Examples of a value
optimization algorithm include TD methods, i.e., TD-learning,
Q-learning, DQN, etc. Policy-based methods include Prox-
imal Policy Optimization (PPO), REINFORCE, etc. Actor-
critic methods combine both value-based and policy-based
approaches, and includes A3C, ACER, IMPALA, etc.

III. DATASET

Since our problem is fundamentally a game, we designed
our own environment based on the OpenAI gym framework.
Our environment is a square grid with two agents: a blue
“agent” player and a red “opponent” player. Both players have
full access to information about the state, so there is no hidden
state information.

A. Utility/IsEnd

Formally, the environment is a 2-player zero-sum game. The
players are spawned on random locations in the environment
with 5 lives at the start of each match. The players move simul-
taneously from the perspective of the game as the environment
asks both for their “actions” at the start of each timestep. An
end state occurs when at least one player has run out of all
lives or the two players collide directly. During a collision,
both players lose a life until at least one of them has no lives
left. The players’ utility is 0 if neither has any lives left. If
one player has lives while the other does not, the player with
lives has a utility of +100 while the other has a utility of -100.

B. Actions

The action space for this environment has 4 characteristics.
The first two characteristics control the movement of the tank
as a direction and magnitude pair. The movement action is
an acceleration instead of simply setting the velocity to a
new value, so momentum is somewhat preserved between
timesteps. The speed is capped so that the player does not
have too high of a velocity, and tanks are also forced to stay
in-bounds. The direction is represented as a radian between−π
and π, where 0 represents directly facing the opponent. The
magnitude is a continuous value between −m and m, where
m represents the maximum acceleration at any timestep.

The last two characteristics of the action space control the
firing of bullets. Bullets are circles that move at a constant
velocity and are removed from the environment when they
are out of bounds, or they interact with another bullet or the
tank. If an enemy bullet hits a tank, the tank loses a life and
the bullet disappears. If two bullets collide, one of them is
randomly destroyed while the other continues moving at its
original velocity. Tanks can fire bullets in any direction, but
they have a cooldown of a set number of timesteps for firing
bullets. The action controlling the direction is continuous with
a minimum of −π and a maximum of π. Last characteristic
of the action is a boolean representing whether to fire at this
moment, but this is ignored if the cooldown is still active.

Bullets are launched at a set speed relative to the launching
tank. For example, a bullet being launched in the same
direction as the tank’s motion will move faster than it would
if the tank was standing still.

C. Visual State Representation

As raw pixels, the environment has the tanks as their
respective colors and the bullets have the same color as the
tank they originated from. The lives of the tank are represented
as white circles on the tank itself. This state representation is
helpful for human observers, but we use numerical input for
training and evaluation

Fig. 1. Sample Visual Representation

D. Cartesian State Representation

For each player we can take note of the location (x, y), the
velocity (vx, vy), the number of lives left, and the cooldown.
Since there are 2 players in total, we have 12 continuous
variables to represent the players in the environment. We
also need to track the bullets in the scene and remember the
position (x, y) and velocity (vx, vy) of each. Although there
is a variable number of bullets in any given scene, we can
explicitly calculate the maximum number of bullets possible
on the scene using the fact that bullets move at a constant
velocity greater than some minimum velocity and that there
is a cooldown. When there are less bullets on screen than the
maximum possible, we can repeat the expression of bullets in a

cyclic manner. For example, if there are 5 possible bullets from
a player but only 2 are launched, we can express the first bullet
as a vector b1 and the second bullet as b2. To fill in the rest
of the space, we can express the bullets as [b1, b2, b1, b2, b1].

We need to ensure that the policies designed for the agent
also work for the opponent. We can rearrange the states
to ensure that both of them follow a symmetric structure.
For the agent, the observation is expressed as [agent vars,
opp vars, agent bullets, opp bullets], while the opponent ex-
presses the observation as [opp vars, agent vars, opp bullets,
agent bullets].

Although this representation is technically complete, we
have found that our training algorithms have struggled with
forming strong actions using this representation. We believe
that this is due to the difficulty inherent to converting carte-
sian coordinates to radian values. Both movement and bullet
aiming are inherently angular measurements, so we decided to
construct a different state representation that is better aligned
with the form of these actions.

E. Relative Polar Representation

The relative representation imagines that the agent is sta-
tionary at the origin and the opponent is located on the axis
of angle 0 (or on the positive x axis if we are thinking in
terms of Cartesian coordinates). Note that since 0 represents
facing the opponent in the action space outlined in section B
as well. To achieve this result, the screen is essentially rotated
and translated (but not scaled).

Fig. 2. Left: Original perspective. Right: Rotated perspective of Agent’s
observation. Vector ~r represents the displacement from the agent to the
opponent, and ~v represents the relative velocity of the opponent.

The original angle θ, represented above, is calculated as:

θ = atan2(yopp − yagent, xopp − xagent) (1)

For all objects i, we need to recalculate the angles θi as:

θ′i = atan2(yi − yagent, xi − xagent)− θ (2)

Since the agent is considered stationary in this representa-
tion, all velocities must be modified to fit this frame. Therefore,
for all objects i, we need to calculate new velocities (~v) and
positions (~r):

~v′i = ~vi − ~vagent
~r′i = ~ri − ~ragent

(3)

Note that these new velocities and positions are not rotated
to fit the new angle of the observation. We can rotate all of
these, but the operations we will perform on them will not
require this to be true.

We can calculate the new distance between an object i and
the agent as:

li = ||~r′i||2 =
√
~r′i · ~r′i (4)

With the values of θi and li, the agent can understand
the positions of all the objects in the environment as polar
coordinates. To encode velocity, we can calculate angular
momentum and the dot product of velocity and position (which
is proportional to the rate at which the object is approaching
the player for a given distance).

Li = (~r′i × ~v′i) · k̂ = r′i,xv
′
i,y − r′i,yv′i,x (5)

Si = ~r′i · ~v′i = r′i,xv
′
i,x + r′i,yv

′
i,y (6)

Theoretically, the combination of θi, li, Li, and Si can be
used to re-calculate all of the original information. However, to
assist with training we can also make some extra calculations.
Specifically, if we assume that all objects continue moving
at their current velocity, we can calculate the distance from
object’s trajectory to the origin (di), and the time it would
take to get there (ti), which could be negative if the object
is moving away from the origin. We can calculate them as
follows:

di =
|Li|
||~vi||

(7)

ti =
−vi,x Li

||~vi||2 − ri,y
vi,y

(8)

An agent can use this information to perceive the threat
of a collision. A large di implies that the trajectory will not
intersect the other player and a large ti means that the object
will take a long time before it collides. Furthermore, a negative
ti means that there is no threat since the object is moving away
from the player.

Since vi,y can be very small or 0, we clip the value of ti
such that its value is less than the maximum time a bullet
can exist in the game. Similarly for di, we ensure that the
magnitude of relative velocity is large enough as to not get an
extremely large number when dividing.

For each bullet, the observation consists of
[θi, li, Li, Si, ti, di]. For the opposing agent, we already
know the angle is 0, so the observation includes
[lopp, Lopp, Sopp, topp, dopp, livesopp, cooldownopp]. For
the agent itself, we actually give the original Cartesian
coordinates since the relative state leaves out some

information. Specifically, it does not know when the
agent’s maximum speed is reached or how close it is to the
game boundary. All of these sub-observations are combined
to the full observation of the form [agent vars, opp vars,
agent bullets, opp bullets].

Finally, to improve the stability of learning, we normalized
all of the input states to be approximately between -10 and 10.
Without this change, the values of Li and Si were extremely
large since their maximum values are the product of the
maximum velocity and the maximum distance between two
objects.

IV. BASELINE

For the baseline, we have developed 2 simple policies.
The simplest is the random action policy (called L0), which
randomly samples from the action space, moving and shooting
randomly. The other policy moves randomly but shoots at the
current position of the opponent (called L1). Note that since
an angle of 0 always corresponds to the current direction of
the opponent, the L1 policy is equivalent to L0 but it has a 0
for the aim direction and it always fires a bullet when possible.

Due to the complexity of the environment, we cannot create
an effective oracle. However, a theoretically optimal agent
would try to dodge incoming bullets while firing bullets at
the expected future location of the opponent. Also, due to the
nature of collisions, an oracle would likely try to collide with
the opponent when they have a comfortable lead on lives but
would flee otherwise. In our analysis, we will see how the
learning agents compare to this idea of an oracle.

V. MAIN APPROACH

We choose to use the widely popular Proximal Policy
Optimization (PPO) as the algorithm for training our agents
because of its empirically strong performance in many RL
tasks. PPO is a policy gradient RL algorithm whose objective
function ensures that each gradient step does not deviate too
much from the old policy, enhancing the training stability.
We choose not to use value-based algorithms such as DQN
because our Tank environment’s action space is continuous,
while valued-based methods typically works better with dis-
crete action spaces.

The choice of the architecture for the policy network is
rather straight-forward. Both of the initial Cartesian State rep-
resentation and the latter Relative Polar representation during
the development of our Tank environment have a bounded
real-valued observation space. Because we do not require
processing of pixel frames, we choose the simple Multilayer
Perception (MLP) structure for the policy network.

The first type of learning we experiment with is training
against a stationary opponent - the baseline policy, L1, which
is simple but surprisingly strong in this game. We expect our
agent to match or outperform the opponent after convergence.

The next step will be enabling self-training by taking
advantage of the symmetry of the tank environment. The self-
training process goes as follows: training starts with both
the player and the opponent being randomly initialized PPO

agents. By training the player against the opponent, we expect
the player to outperform the opponent. When the average
reward of the player against an opponent is greater than a
certain threshold, we will save the current player’s parameters
and make it the opponent. With this iterative training process,
we let the player to continue to evolve by beating older
versions of itself. This process will continue until the agent
no longer improves or the rate of improvement becomes
minuscule. With self-learning, our agent never sees a hard-
coded policy during its training process. It learns purely from
the environment. As a result, it is hard to predict the final
performance of such an agent.

VI. EVALUATION METRIC

We evaluate the strength of our AI by playing many games
against the other policies and determining the number of wins,
losses, and ties. We also determine the mean and standard
deviation of rewards for games between two environments to
determine the consistency of wins or losses.

VII. RESULTS & ANALYSIS

A. Initial Attempt

We started our experiments with the first version of obser-
vation space - the Cartesian state representation. We trained
our agent against the L1 baseline opponent, and after a few
million timesteps of training and attempts to tune the hyper
parameters, the agent does not seem to learn well.

Fig. 3. Training Rewards in the First Training Attempt

The training rewards clearly showed that the algorithm made
no progress in training the agent. We initially hypothesized
that the L1 opponent might be too strong for the agent to
receive any reward signals, so we tried to train it against the
L0 random agent. However, it turned out that the learning
curve is still flat even against the random opponent. We
investigated possible bugs in our Tank environment, attempted
hyper-parameter tuning and tried other algorithms such as A2C
and TD3, but these attempts were all to no avail.

B. Changes to the Tank Environment

As a result of the failed attempts, we tried to make changes
in the Tank environment that could potentially aid training. We

made attempts on two fronts, observation space representation
and rewards. The details of the Relative Polar Representation
have been explained in the previous sections, so we make no
further elaborations here. For rewards, the original environ-
ment only yields reward at the end of an episode when player
wins, loses or ties. Such sparse rewards makes it difficult
for the algorithm pick up useful signals for the majority
of timesteps, especially earlier ones. To solve this problem,
we decided to create a training environment with additional
rewards that reflect mid-game events. For example, the player
losing a life will get a negative reward, while the opponent
losing a life will produce a positive reward. Some strategically
beneficial events also receive rewards. For example, cancelling
an opponent bullet with a player bullet will produce a small
reward.

With these modifications, we managed to train a PPO agent
that can outperform the L1 baseline opponent with a relatively
small number of training timesteps.

Fig. 4. Rewards of PPO agent against L1 opponent

It is important to note that training and evaluation of an
agent took place in two different environments. The training
environment has the additional rewards that help training of
the agent, while the evaluation environment uses the original
end-of-episode reward. In figure 4, the orange line shows the
evaluation rewards.

C. Hyper-Parameter Tuning
While we finally trained an agent that beats the L1 baseline

opponent, the hyper-parameters used in this model were the
default values, so we still needed to perform hyper-parameter
tuning for the PPO agent to perform better. Due to time
limitation, we only attempted to a few hyper-parameters that
we consider to be most relevant.

We first attempted tweaking the discount factor γ. Although
the default 0.99 is relatively high already, the “big reward”
in our Tank environment only appears at the end of each
episode, so we tried to further increase it. After some attempts,
we found that with γ = 0.995, the PPO agent outperforms
the default value. Figure 5 shows that most of the evaluation
rewards are above zero, and the maximum evaluation rewards
is 31, which is above that of the PPO agent with default hyper-
parameters.

Fig. 5. Rewards of PPO agent against L1 opponent, γ = 0.995

We also tried some different batch sizes, but since we did
not identify a value that surpasses the default, we will not
elaborate here. From the experiments so far, we realized that
the model first learned rapidly but then started oscillating.
We expected that a smaller gradient steps might cause slower
learning but higher rewards at convergence.

Fig. 6. Rewards of PPO agent against L1 opponent, stepsize = 3e-5

It turned out that with a smaller stepsize, training was
indeed a little slower, but the end performance far exceeded
the expectation. The evaluation rewards it obtained were a lot
closer to the theoretical limit of 100, compared to all other
agents so far.

D. PPO Self-Training

The learning curve of the self-training PPO agent looks
quite different from the others, mainly because that the oppo-
nent is not stationary but frequently updated. This is the reason
why the training rewards never went too much higher above
zero; once the player became good enough, the opponent
became a copy of the player and drove the training rewards
down.

The red dashed line in figure 7 represents the evolution
threshold. Whenever the evaluation reward is higher then the
threshold, the opponent is replaced with a copy of the current
player, and a new iteration begins.

Fig. 7. Rewards of Self-Learning PPO Agent against an Evolving Version of
Itself

E. Final Agent Rewards

After generating our optimal PPO and Self Training (ST)
models, we can evaluate their strength by running games
multiple times against another policy. Table 1 represents the
rewards from running 300 games between two agents. As a
reminder, L0 represents a completely random policy while L1
represents a policy that moves randomly but aims at the current
position of the opponent.

TABLE I
REWARDS OF COMPETING POLICIES (TOP ROW VS LEFT COLUMN)

L0 L1 PPO ST
L0 -1.0 (4.91) 92.0 (1.767) 98.67 (0.66) 91.0 (1.65)

107-83-110 279-18-3 296-4-0 273-27-0
L1 -93.67 (1.48) -2.0 (5.54) 55.67 (4.69) 41.67 (4.68)

1-17-282 135-24-141 229-9-62 181-51-62
PPO -98.0 (0.81) -57.0 (4.64) -3.0 (5.38) -3.0 (5.34)

0-6-294 60-9-231 126-39-135 124-43-133
ST -93.0 (1.47) -33.0 (5.04) 6.0 (5.34) -7.33 (5.23)

0-21-279 81-39-180 138-42-120 113-52-135
Table 1: Each cell represents the result of 300 games of the player from the

top row vs the player from the left column (where the score is from the
perspective of the first player). The top value is the sample mean reward

along with the standard deviation of the sample mean in parenthesis (sample
standard deviation divided by

√
300). The bottom values represent

wins-ties-losses.

The diagonal of the above table exists to demonstrate the
“fairness” of the tank environment. In the diagonal, each policy
is playing against itself and we find that 0 is always within
2 standard deviations of the each mean. Therefore, we cannot
confidently state that the environment or learnt policies are
biased in favor of one side over the other.

As expected, the random L0 policy is the weakest agent,
losing to other opponents almost all the time. PPO seems to be
the strongest opponent against this agent, winning around 98%
of the games and having ties for the other 2%. The expected
rewards for L1 and ST do not seem to have a statistically
significant difference. However, ST never loses any match
against L0 while L1 loses a few matches (approximately 1%
of the time).

The hand-coded L1 policy is beaten by both PPO and ST
in terms of average rewards. PPO performed much better than

ST on average, though this appears to be mostly because PPO
can convert many of ST’s ties into wins.

When PPO and ST are playing against one another, PPO
tends to win more often, though not by a statistically signifi-
cant margin when running for 300 games.

We can conclude that PPO trained against L1 is the strongest
policy in the games above. Against all other opponents, PPO
has an average positive reward, indicating that it wins more
often than it loses.

F. Qualitative Analysis

The PPO agent appears to have many qualities expected
of an optimal agent. The agent tends to move towards the
opponent when it has more health but tries to move away
when it has less health. It also appears to be able to dodge
bullets when it is far away, but this is imperfect, especially
when it has hit a wall. Its bullets also seem to hit the opponent
more often than those from L1, which launches bullets based
on the present location of the opponent. This accuracy could
come from the fact that the agent tries to move closer to the
opponent when it is winning (therefore decreasing the chances
of missing) and because it is choosing where to aim based on
some prediction of the future location of the opponent.

The ST agent also acts similarly to PPO with some interest-
ing differences. Specifically, ST often tries to induce a tie at
the start of the game by colliding with the other agent before
either has the chance to launch a bullet.

When PPO and ST play against one another (or each play
against themselves), we see that the agent with more lives tries
to chase the agent with less lives while each aim directly at
one another. We can’t observe much bullet-dodging behaviour,
but this is likely due to the fact that the winning agent always
tries to stay close to the opponent, making neither side able
to dodge.

G. Difference between PPO and ST

PPO directly trains against the L1 agent, which is why we
can intuitively expect it to be the strongest opponent against
L1. However, this also means that PPO implicitly assumes that
the opponent will be similar to the L1 agent. We see that, in
practice, this was a good assumption as PPO ended up being
the strongest agent of the four, and was extremely effective
against the L0 agent.

On the other hand, ST trains against the strongest older
version of itself, so it implicitly assumes that the opponent
will act in a similar way to the agent it has trained against.
This fact could explain why ST is more tempted to induce ties
at the start of the rounds. Against a strong opponent, getting
a guaranteed tie (with a score of 0), is more favorable than
having the high possibility of losing.

Since neither PPO nor ST have trained against the other, the
fact that PPO wins indicates that its policy generalizes better.

VIII. ERROR ANALYSIS

One unexpected outcome related to the self-training process
is that the final model has a lower performance then some

of the intermediate versions. Specifically, we found that the
model generated in the 15-th iteration had the strongest
performance against other policies, and we actually used that
model instead of the final model when evaluating the final
performance.

To understand this result, we need to revisit figure 7. We can
see that in the earlier timesteps, most of the evaluation rewards
are above the threshold, meaning that the agent managed to
surpass the opponent in just one evaluation cycle. However,
as training progresses, more and more evaluation rewards are
below the threshold. This is likely because that the opponent
have gotten stronger, and it is harder to gain an advantage
against it.

One hypothesis behind a declining performance after some
iterations is that the agent starts to overfit itself. As the agent
gets stronger, it needs to develop strategies specifically against
itself, which might be effective only against itself but not other
opponents.

Another hypothesis is that in the later half of the training
process, all the improvements gained by the agents were
merely noises. There were considerable oscillations around
the threshold in the evaluation rewards towards the end of
the training process, and an agent might just have got lucky
to be above the threshold.

IX. FUTURE WORK

A. Tank Environment

The current Tank environment we made is relatively simple.
As a result, a policy that merely shoots at the opponent is al-
ready quite strong. To make the environment more interesting,
we might want to add more complexity to the game so that
the agent has be more strategic to win. For example, we could
add walls in the game so that a good agent could learn to use
a wall as a cover and “play the corner”.

Another possible area of future works is training with a
different type of observation space. We only experimented
with the numerical representations but not a pixel one in our
project. In the future, it would be interesting to see if we can
train an agent with just the visual inputs.

B. Training

With more time, we could perform better hyper-parameter
tuning. In the project we only tuned hyper-parameters individ-
ually and used the one that produced the best result. A better
approach would be doing a grid search over different combina-
tions of hyper-parameters, and we might have achieved a better
performance. We also just used the same hyper-parameters
we tuned for the normal PPO on the self-learning PPO. With
more time we could tune hyper-parameters of self-play PPO
separately.

As explained in the Error Analysis section, one hypothesis
we had for the self-learning agent’s decline in performance is
the noises in the latter training process. One potential solution
is to raise the evolution threshold, so that each iteration takes
longer, but improvements might be more robust.

Last but not least, we only tried training the self-play agent
from scratch. One alternative that we could explore is starting
with a strong opponent instead of a random one. This allows
us to see if self-learning can improve further upon an already
converged PPO agent.

X. CODE

Link to our Github repo:
https://github.com/guohaoang/TankGym

The sandbox repo with extra files along with the commits
during development:

https://github.com/barrybrianbarrios/slimevolleygym

Special thanks to David Ha, the author of SlimeVolleyGym
environment, which we used as a starting point for developing
our Tank environment and the training process.

REFERENCES

[1] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G.,
Dabney, W., . . . Silver, D. (2017, October 06). Rainbow: Combining
improvements in deep reinforcement learning. Retrieved April 30, 2021,
from https://arxiv.org/abs/1710.02298

[2] Fang YP, Ting IH. Applying Reinforcement Learning for the AI in
a Tank-Battle Game. JOURNAL OF SOFTWARE, VOL. 5, NO.12,
DECEMBER 2010.

[3] Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., . . . Kavukcuoglu, K. (2016, June 16). Asynchronous meth-
ods for deep reinforcement learning. Retrieved April 30, 2021, from
https://arxiv.org/abs/1602.01783

[4] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017,
August 28). Proximal policy optimization algorithms. Retrieved April
30, 2021, from https://arxiv.org/abs/1707.06347

[5] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hassabis, D. (2017, October 19). Mastering the game
of go without human knowledge. Retrieved April 30, 2021, from
https://www.nature.com/articles/nature24270

[6] Smith, Tony C., and Jonathan Miles. ”Continuous and Reinforcement
Learning Methods for First-Person Shooter Games.” GSTF Journal on
Computing (JoC) 1.1 (2014).

[7] David Ha. 2020. Slime Volleyball Gym Environment.
https://github.com/hardmaru/slimevolleygym. (2021).

[8] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-
stra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

